

CodeWarrior ®

Porting Reference

Because of last-minute changes to CodeWarrior,
some of the information in this manual may be

inaccurate. Please read the Release Notes on the
CodeWarrior CD for the latest up-to-date information.

Revised: 99/02/09 map

Metrowerks CodeWarrior copyright ©1993Ð1999 by Metrowerks Inc. and its licensors.
All rights reserved.
Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or trans-
mitted in any form by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from Metrowerks Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks
of Metrowerks Inc.
All other trademarks and registered trademarks are the property of their respective
owners.
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUB-
JECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and internationa l Metrowerks Corporation
9801 Metric, Suite 100
Austin, TX 78758
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Orderin g Voice: (800) 377Ð5416
Fax: (512) 873Ð4901

World Wide We b http://www.metrowerks.com

Registration informatio n register@metrowerks.com

Technical suppor t cw_support@metrowerks.com

Sales, marketing, & licensin g sales@metrowerks.com

CompuServ e Go: Metrowerks

Table of Contents
1 Welcome 5

Read the Release Notes 5
CodeWarrior Year 2000 Compliance 6
What is New in This Release 6
What is in This Guide 6
Where to Go From Here 7

2 Common Porting Issues 9
C and C++ Issues . . 9

About Metrowerks Standard Libraries 9
ARM and Other C++ Implementations 10
CFront and Metrowerks C++ 10
UNIX and POSIX Libraries 12
The sizeof() operator and int 12

Mac OS Issues . 14
Where to Find More Information About Mac OS 14
Console I/O for Mac OS. 14
Command-Line Arguments for Mac OS 15
File Redirection for Mac OS 15
Including Files In C/C++ on Mac OS 15

3 Microsoft ® Visual Studio ® Porting Issues 17
C/C++ Compiler Differences. 17

Conforming to the ANSI/ISO C and C++ Standards 18
Relaxed Pointer Type Rules 19
RTTI . 19
Exception Handling 19
Name Mangling . 19
IEEE Floating Point Standards 20
Inline Assembler . 21

C/C++ Library Differences 22

4 THINK® Pascal and MPW Pascal Porting Issues 25
Pascal Compiler Differences 25
Porting Reference POR–3

Mac OS Toolbox Initialization 25
Pascal Library Differences 26

About Universal Interfaces 27
Using Interfaces and Units. 27
QuickDraw Global Variables 28
SANE is Obsolete 29
68K and PowerPC Numerics 29
Procedure Pointers, Callbacks, and UPPs 29

Index 33
POR–4 Porting Reference

1
Welcome
Welcome to the CodeWarrior Porting Reference. This guide offers
hints and tips on moving your programming project from other
software development environments to CodeWarrior. It also points
you to other CodeWarrior documentation for more in-depth topics.

Use this guide if you are new CodeWarrior or you are converting a
programming project from another development system to
CodeWarrior.

This guide refers to development tools that might not be available
with the CodeWarrior package you have. Consult the QuickStart
guide that came with your CodeWarrior package for information on
what is in your CodeWarrior package.

This chapter has these sections:

¥ Read the Release Notes

¥ CodeWarrior Year 2000 Compliance

¥ What is New in This Release

¥ What is in This Guide

¥ Where to Go From Here

Read the Release Notes
Before using CodeWarrior, read the information in the Release
Notes folder, which is on the CodeWarrior CD-ROM and installed
in the CodeWarrior folder on your computerÕs hard drive.

The release notes contain important information about new fea-
tures, bug Þxes, and any late-breaking changes.
Porting Reference POR–5

Welcome
CodeWarrior Year 2000 Compliance
CodeWarrior Year 2000 Compliance
The Products provided by Metrowerks under the License agree-
ment process dates only to the extent that the Products use date data
provided by the host or target operating system for date representa-
tions used in internal processes, such as file modifications. Any Year
2000 Compliance issues resulting from the operation of the Products
are therefore necessarily subject to the Year 2000 Compliance of the
relevant host or target operating system. Metrowerks directs you to
the relevant statements of Microsoft Corporation, Sun Microsys-
tems, Inc., Apple Computer, Inc., and other host or target operating
systems relating to the Year 2000 Compliance of their operating sys-
tems. Except as expressly described above, the Products, in them-
selves, do not process date data and therefore do not implicate Year
2000 Compliance issues.

For additional information, visit: http://www.metrow-
erks.com/about/y2k.html .

What is New in This Release
This guide has been significantly rewritten. It now has new and up-
dated information on moving a programming project to CodeWar-
rior.

Also, future revisions of this guide will add information about mov-
ing to CodeWarrior from more software development environ-
ments.

What is in This Guide
The chapters in this guide are listed in Table 1.1.
POR–6 Porting Reference

Welcome
Where to Go From Here
Table 1.1 Chapters in this guide

Where to Go From Here
This guide only discusses unique issues and problems that you
might encounter when converting your programming project to
CodeWarrior. To learn more about CodeWarriorÕs tools and librar-
ies, refer to the table listed at the end of this guide, ÒGuide to
CodeWarrior DocumentationÓ on page 38..

If you are new to CodeWarrior, you will find these manuals and ref-
erences the most useful:

¥ CodeWarrior IDE User GuideÑhow to use the CodeWarrior
IDE to edit, search, navigate, compile, link, debug, and man-
age programming projects

¥ C Compilers ReferenceÑdiscusses the CodeWarrior implemen-
tations of the C, C++, Embedded C++, and Objective C pro-
gramming languages

¥ MSL C++ ReferenceÑdescribes the Metrowerks Standard Li-
brary for C

¥ MSL C ReferenceÑdescribes the Metrowerks Standard Li-
brary for C++

Read this chapter… to learn about

ÒWelcomeÓ on page 5 using this guide

ÒCommon Porting IssuesÓ on page 9 solutions to common problems you
might encounter when porting your
project to CodeWarrior

ÒMicrosoft¨ Visual Studio¨ Porting IssuesÓ
on page 17

converting a programming project
from Miscrosoft Visual Studio to
CodeWarrior

ÒTHINK¨ Pascal and MPW Pascal Porting
IssuesÓ on page 25

converting a Mac OS programming
project from THINK Pascal or MPW
Pascal to CodeWarrior Pascal
Porting Reference POR–7

Welcome
Where to Go From Here
¥ Pascal Compilers ReferenceÑdiscusses the CodeWarrior imple-
mentation of the Pascal and Object Pascal programming lan-
guages

¥ Pascal Language ReferenceÑdescribes the elements of the
CodeWarrior Pascal programming language

¥ Pascal Library ReferenceÑdescribes the built-in library rou-
tines in CodeWarrior Pascal

¥ Targeting manualsÑdescribe how to use CodeWarrior to de-
velop software for a specific processor or operating system

For example, to learn how to use CodeWarrior to create soft-
ware for the Apple Macintosh, read Targeting Mac OS.
POR–8 Porting Reference

2
Common Porting
Issues
This chapter covers general problems and differences among other
software development tools and CodeWarrior. The topics in this
chapter describe the CodeWarrior features that have subtle and ob-
vious differences from most other development environments.

This chapter has these sections:

¥ C and C++ Issues

¥ Mac OS Issues

C and C++ Issues
This section covers topics on differences between the CodeWarrior
C and C++ compilers and other compilers:

¥ About Metrowerks Standard Libraries

¥ ARM and Other C++ Implementations

¥ CFront and Metrowerks C++

¥ UNIX and POSIX Libraries

¥ The sizeof() operator and int

About Metrowerks Standard Libraries

The Metrowerks Standard Libraries (MSL) for C and C++ comply
with the libraries described by the ANSI/ISO C and C++ Standards.

MSL C and MSL C++ also have functions that are commonly avail-
able but are not part of their respective standards. For example,
MSL C has functions that are commonly available in UNIX.
Porting Reference POR–9

Common Port ing Issues
C and C++ Issues
ARM and Other C++ Implementations

CodeWarrior C++ conforms to the ANSI/ISO C++ standard, al-
though it has options to compile source code that conforms to the
C++ specification in the Annotated C++ Reference Manual (ARM).

For information on compiling non-ANSI C++ source code, refer to
the C, C++, And Assembly Language Reference.

CFront and Metrowerks C++

MSL C++ conforms to the ANSI/ISO C++ Standard for the C++
streams libraries. There are a few variations from the standard as ac-
cepted and published in such books as StroustrupÕs The C++ Pro-
gramming Language, 2nd edition (Addison-Wesly, 1991) and Stanley
B. LippmanÕs C++ Primer, 2nd edition (Addison-Wesley, 1991) com-
monly referred to as the C++ Programming Language or CFront
C++.

For information on compiling non-ANSI C++ source code, refer to
the C Compilers Reference.

#include header naming conventions

ANSI C++ no longer require a file name extension for the include
files. However, the file extension naming conventions are provided
for by ANSI C++, and included in Metrowerks.

CFront C++

#include <iostream.h>

ANSI C++

#include <iostream>

File open modes

Listing 2.1 shows the valid combinations of ios::openmode for
opening a file as defined in the ANSI C++ libraryÑthese are defined
in terms of the equivalent modestr used in fopen(s, modestr)
(see para 7.9.5.3 of ANSI Standard for C).
POR–10 Porting Reference

Common Port ing Issues
C and C++ Issues
Listing 2.1 File open modes

ios::in modestr = "r"
ios::out | ios::trunc modestr = "w"
ios::out | ios::app modestr = "a"
ios::in | ios::bin modestr = "rb"
ios::out | ios::trunc | ios::bin modestr = "wb"
ios::out | ios::app | ios::bin modestr = "ab"
ios::in | ios::out modestr = "r+"
ios::in | ios::out | ios::trunc modestr = "w+"
ios::in | ios::out | ios::app modestr = "a+"
ios::in | ios::out | ios::bin modestr = "r+b"
ios::in | ios::out | ios::trunc | ios::bin modestr = "w+b"
ios::in | ios::out | ios::app | ios::bin modestr = "a+b"

All other combinations are invalid and no file is opened and no
error message is produced.

File open and close testing

Use the is_open() function to test for an open file.

In CFront C++:

ofstream to("testFile");
if (!to) /* ... */

In ANSI C++:
ofstream to("testFile");

if (to.is_open() == 0) /* ... */

iostream fail() vs. eof()

Historically (before the advent of the ANSI/ISO C++ specification)
the eofbit was set haphazardly. ANSI C++ libraries do not set the
eofbit , therefore the previous practice of using the function
eof() , which gave a non-zero result when the end of file was
reached, is no longer useful. Instead you should test the value of the
fail() function, which will pick up both eof and other kinds of
failure, as shown in Listing 2.2.
Porting Reference POR–11

Common Port ing Issues
C and C++ Issues
Listing 2.2 fail() vs. eof()

#include <iostream>
#include <fstream>

void main()
{
 // fill file with 10 x's
 ofstream out("testfile");
 for(int i = 0; i < 10; i++) out.put('X');
 out.close();

 char c = 0;
 ifstream input("testfile");

 // while (!input.fail()) this leaves EOF character
 // while(input.peek() != EOF)this works but less safe
 while (!input.fail() && input.peek() != EOF)
 {
 c = input.get() ;
 cout << "char: " << c << endl;
 }
 input.close();
}

UNIX and POSIX Libraries

There are header files that provide some of the functions in the
POSIX standard and many functions found in UNIX libraries that
are not specified in the ANSI C or ANSI C++ standards.

Refer to fnctl.h , stat.h , unistd.h , unix.h , utime.h , and
utsname.h in the C Library Reference for more information.

The sizeof() operator and int

When programming in C, do not assume that the value of a
sizeof() operator is assignment compatible with the int or long
data types.
POR–12 Porting Reference

Common Port ing Issues
C and C++ Issues
According to the ANSI C standard sizeof() returns a value of
type size_t , defined in stddef.h .

The size_t and int data types are often the same, but might differ
depending on the platform or processor. Refer to Listing 2.3 for an
example of how a program executes incorrectly when it assumes
that size_t and int are the same size.

Listing 2.3 Making assumptions about sizeof() and int

#include <stdio.h>
#include <stddef.h>

typedef struct {
charbigArray[100000];

} MyStruct;

void main(void)
{

int j;
size_t t;

j = sizeof(MyStruct); /* This doesn't work */
t = sizeof(MyStruct); /* This works */

printf("bad size of MyStruct = %ld\n", j);
printf("good size of MyStruct = %ld\n", t);

}

/* Output, running on Mac OS for 68K:

bad size of MyStruct = -2036334591
good size of MyStruct = 100000

*/

There are a few variations from the MSL implementation of C++
and previous versions of ANSI/ISO C++. MSL C++ conforms as
closely as possible to the ANSI/ISO C++ standard.
Porting Reference POR–13

Common Port ing Issues
Mac OS Issues
¥ The fstream class is now included for mixed input and out-
put.

¥ The file reading facilities tellg() , tellp() , seekg() , and
seekp() are now included in the ANSI C++ standard.

¥ The STL algorithms are now part of the proposed standard
and conflict with older versions of the STL Libraries.

Mac OS Issues
The topics in this section deal with common problems you might
have when porting your programming project to AppleÕs Mac OS.
Of course, this section cannot cover every aspect of porting a project
to a new operating system. Instead, it gives you tips and references
to other documentation to help you.

The topics in this section are:

¥ Where to Find More Information About Mac OS

¥ Console I/O for Mac OS

¥ Command-Line Arguments for Mac OS

¥ File Redirection for Mac OS

¥ Including Files In C/C++ on Mac OS

Where to Find More Information About Mac OS

YouÕll find comprehensive documentation, sample source code, and
other resources for Mac OS development at AppleÕs web site for
software developers, http://www.apple.com/developer/ .

To learn how to use CodeWarrior to develop software for Mac OS,
see Targeting Mac OS.

Console I/O for Mac OS

For programs that use simple text input/output without calling on
any Mac OS-specific features, CodeWarrior provides SIOUX.
SIOUX is a Mac OS software package that automatically opens a
text window, accepts characters from the keyboard, and handles
POR–14 Porting Reference

Common Port ing Issues
Mac OS Issues
menus. SIOUX does all this transparently; you, the programmer, do
not have to explicitly invoke SIOUX.

Simply by calling a standard C or C++ function that reads from or
writes to the standard input, output, or error files will invoke
SIOUX automatically.

Refer to the MSL C Reference for information on customizing SIOUX.

Command-Line Arguments for Mac OS

The C/C++ ccommand() function provides a dialog box that al-
lows the user to enter text as if it were at the command line. Refer to
ccommand() in the MSL C Reference for more information.

File Redirection for Mac OS

For UNIX-style file redirection, use the C/C++ ccommand() func-
tion. Refer to ccommand in the MSL C Reference for more informa-
tion.

Including Files In C/C++ on Mac OS

When using CodeWarrior on Mac OS, CodeWarrior C/C++ handles
subdirectory names in #include directives differently than UNIX
compilers. In particular, Mac OS uses the colon, Ò:Ó, as a directory
separator character, not the slash, Ò/Ó.

For example, when using CodeWarrior on a Mac OS computer, issu-
ing this directive

#include "special/datatypes.h"

will actually include a file named Òspecial/datatypes.h ,Ó not
the file Òdatatypes.h Ó in the ÒspecialÓ directory.

Specify Subdirectories for #include Directives

The recommended way to specify a directory for an #include di-
rective is to add the directory to the list of access paths in the
projectÕs Access Paths project settings panel and remove references
Porting Reference POR–15

Common Port ing Issues
Mac OS Issues
to subdirectories in all #include directives. Refer to the CodeWar-
rior IDE Guide for more information on access path preferences.

Another way to specify a subdirectory for an #include directive is
to convert the pathname to a Mac OS pathname. For example

#include "special/datatypes.h"

becomes
#include ":special:datatypes.h"
POR–16 Porting Reference

3
Microsoft ® Visual
Studio ® Porting
Issues
This chapter covers common problems and issues you will encoun-
ter when porting a programming project from Microsoft Visual Stu-
dioÕs C/C++ compilers to CodeWarrior. Specifically, this chapter
covers differences and potential problems (and solutions) you will
encounter when porting a project originally developed for the
Win32/x86 platform.

This chapter has these sections:

¥ C/C++ Compiler Differences

¥ C/C++ Library Differences

C/C++ Compiler Differences
Notable differences between CodeWarrior C and C++ compilers
and the Microsoft C and C++ compilers are listed here:

¥ Conforming to the ANSI/ISO C and C++ Standards

¥ Relaxed Pointer Type Rules

¥ RTTI

¥ Exception Handling

¥ Name Mangling

¥ IEEE Floating Point Standards
Porting Reference POR–17

Microsoft ® Visual Studio ® Port ing Issues
C/C++ Compiler Differences
Conforming to the ANSI/ISO C and C++
Standards

When the ANSI Strict option in the C/C++ Language settings panel
is enabled, all non-standard language extensions are disabled. Un-
less you are writing software that must be portable to any ANSI C/
C++ platform, you probably should leave ANSI Strict option turned
off.

Refer to the C Compilers Reference for complete information on the
ANSI Strict option.

These language extensions include:

¥ array sizes of 0 and empty arrays as trailing structure mem-
bers

¥ multiple identical typedef s

¥ using a void return type for main()

¥ unsigned enumeration types

¥ bitfields that are not int -sized

¥ anonymous unions

¥ computed goto labels

¥ GNU-style temporary initialization casts

¥ asm() -form inline assembly

¥ unnamed arguments

¥ pointer to integer conversions

¥ C++-style single-line comments in C source code (Ò// Ó)

¥ long long constants with Òi64 Ó suffix

¥ double constants with a ÒdÓ suffix

¥ binary constants with a Ò0bÓ prefix

¥ # on line by itself

¥ ignored tokens after #else and #endif

¥ supporting #warning and #ident preprocessor directives
POR–18 Porting Reference

Microsoft ® Visual Studio ® Port ing Issues
C/C++ Compiler Differences
Relaxed Pointer Type Rules

When you turn on the Relaxed Pointer Type Rules option in the C/
C++ Language settings panel, CodeWarrior C overlooks the normal
type checking it does when assigning from one pointer to another.
The compiler does not warn or give an error message in cases where
you mix pointers to different types. For example, when this option
is on, the compiler will allow code like this:

struct foo *mary;
char *bob = mary;

This option should be avoided when possible.

This option has no effect on C++. When compiling C++ source code,
the compiler differentiates pointer types even if this option is on.

This option exists to make it easier to port old pre-ANSI C code that
assumed that any pointer had the same representation as any other
pointer. C source code for Microsoft Windows that uses generic
handles (HANDLE) instead of specific types of handles (for example,
HWND) might not compile with this option turned off.

RTTI

CodeWarrior currently does not support Microsoft-compatible C++
runtime type information (RTTI). CodeWarrior does support
ANSI/ISO C++ RTTI, but you cannot use typeof() or
dynamic_cast<> on objects compiled by Microsoft C++.

Exception Handling

CodeWarrior provides full support for Microsoft-compatible C++
exception handling.

Name Mangling

CodeWarrior C++Õs name mangling on templates is incompatible
with Microsoft C++Õs mangling when ARM Conformance is turned
off in the C/C++ Language settings panel. With ARM Conformance
Porting Reference POR–19

Microsoft ® Visual Studio ® Port ing Issues
C/C++ Compiler Differences
off, CodeWarrior can support the differentiation between template
and non-template functions that do not include the template type in
their parameter lists.

For example:

template <class T> void foo (int a);
void foo (int a);

Using the Microsoft name mangling scheme, these two functions
are mangled identically, although, in your code, you could differen-
tiate them by:

foo<int> (42);
foo (42);

IEEE Floating Point Standards

CodeWarrior C/C++ follows the IEEE standards regarding the out-
come of comparison operators and NaN (not a number). These are
all considered unordered, so any comparison involving NaN will be
false, except for the not equals comparison (!=) which returns true.

Microsoft C++ version 5 and Microsoft C++ version 6 do not gener-
ate instructions to check the unordered flag on comparisons, so the
result of the comparison may vary depending on the exact encoding
of the NaNs involved in the operation.

CodeWarrior C/C++ compilers for x86 and Microsoft C++ correctly
handle propagation of NaNs through arithmetic operations, as that
is handled by the floating point processor. For any operation, if one
or both of the operands is a NaN, the result will also be a NaN.

If you have problems with this discrepancy in your code, you may
want to enable the processor exception on NaN generation, but most
code should never have to deal with these values.

To do so, you can add this code fragment to your project, with a call
to enable_nan_exception() sometime before you expect the
NaN to be generated. You should then enable the Float Invalid Op
exception in the x86 Exception debugging settings panel.
POR–20 Porting Reference

Microsoft ® Visual Studio ® Port ing Issues
C/C++ Compiler Differences
#include <fenv.h>
void enable_nan_exception(void)
{
 fenv_t fe;
 // this should turn on exceptions
 // on NaN generation
 fegetenv(&fe);
 fe = fe & ~FE_INVALID;
 fesetenv(&fe);
}

Inline Assembler

Microsoft uses a syntax for the inline assembler in their C/C++
compiler similar to, but not exactly like MASM. Since this is barely
documented, the CodeWarrior assembler attempts to duplicate the
observed behavior of the Microsoft assembler. Note that there may
be some cases where it will not detect an error.

Some of the inline assembler support includes:

¥ Both CodeWarrior C++ and Microsoft C++ use Intel syntax
for their inline assembler.

¥ The Microsoft assembler treats labels as case insensitive,
while CodeWarrior requires an exact match on case.

¥ Directives not supported in the x86 assembler: EVEN.

¥ CodeWarrior supports the SIZE keyword in assembly ex-
pressions for getting the size (in bytes) of an object.
CodeWarrior does not support LENGTH or TYPE.

¥ CodeWarrior supports the ALIGN, DB, DW, and DD directives.
CodeWarrior supports EMIT rather than _emit for directly
inserting bytes into the assembly code.

¥ CodeWarrior ignores the SHORT modifier on jump instruc-
tions because it generates short jumps, if possible, by default.
Microsoft uses SHORT as a flag to generate a short jump if
possible.

¥ The assembler for x86 does not always correctly determine
the size of file-scope static objects, especially when they are
Porting Reference POR–21

Microsoft ® Visual Studio ® Port ing Issues
C/C++ Library Differences
declared as arrays. If you are referring to them from assem-
bly, you should explicitly name a size, for example:

mov dword ptr [foo], eax

is preferred over:

mov [foo], eax

as the second form may generate the wrong instruction. This
has been fixed in later versions of the assembler.

¥ The CodeWarrior assembler does not accept suffix notation
hexadecimal numbers. 0x1AE3 is allowed, but 1AE3h is not.

C/C++ Library Differences
The extras.c file (part of MSL for Intel platforms) defines the fol-
lowing functions which are equivalent to functions by the same
name in MicrosoftÕs library. These functions include:

CodeWarrior also supports many of the C9X standardÕs new float-
ing point functions. In some cases, there are C9X equivalents for Mi-
crosoft library functions, although their interfaces may not be the
same. The MS FPU control functions _clear87() , _clearfp() ,

_chdrive() _heapmin() _stricmp()

_strnicmp() _strrev() _wstrrev()

_strdup() _strupr() _strdate()

_itoa() _itow() _ultoa()

_fullpath() _alloca() _makepath()

_searchenv() _getdiskfree() _getdcwd()

_getdrive() _getdrives() _strlwr()

_splitpath() _wtoi() _wcslwr()

_wcsupr() _wcsdup() _wcsicmp()

_wcsnicmp() _wcsrev() _wcsset()

_wcsnset() _gcvt()
POR–22 Porting Reference

Microsoft ® Visual Studio ® Port ing Issues
C/C++ Library Differences
_control87() , _controlfp() , _status87() , _fpreset() ,
and _fpieee_ flt() are supported by functions declared in the
C9X fenv.h header file. CodeWarrior does not implement equiva-
lents of _chgsign() and the Bessel functions.

Some of the functions supported are listed in Table 3.1.

Table 3.1 Microsoft functions and their ANSI/ISO equivalents

This Microsoft function… is equivalent to this ANSI/ISO
C9X function

_finite() isfinite()

_hypot() hypot()

_isnan() isnan()

_copysign() copysign()

_nextafter() nextafter()

_scalb() scalb()

_fpclass() fpclassify()
Porting Reference POR–23

Microsoft ® Visual Studio ® Port ing Issues
C/C++ Library Differences
POR–24 Porting Reference

4
THINK® Pascal and
MPW Pascal Porting
Issues
This chapter covers issues you will encounter when porting a pro-
gramming project from Symantecª THINK Pascal or AppleÕs MPW
Pascal to the CodeWarrior IDE, including potential problems (and
solutions) you might have when porting a project that run on Mac-
intosh computers with Motorola 680x0 processors. This chapter also
covers topic to help you port your application to run on PowerPC-
based Macintosh computers.

This chapter has these sections:

¥ Pascal Compiler Differences

¥ Pascal Library Differences

For related information, see ÒMac OS IssuesÓ on page 14.

Pascal Compiler Differences
Notable differences between CodeWarrior Pascal compilers and
other Pascal compilers for Mac OS are listed here:

¥ Mac OS Toolbox Initialization

Mac OS Toolbox Initialization

Applications ported from THINK Pascal to CodeWarrior Pascal for
Mac OS sometimes crash immediately after they are launched. The
reason: THINK Pascal has an option that automatically initializes
the Mac OS Toolbox. In CodeWarrior Pascal it is up to you, the pro-
Porting Reference POR–25

THINK ® Pascal and MPW Pascal Port ing Issues
Pascal Library Differences
grammer, to call the proper initialization routines before using
QuickDraw, Window Manager, Menu Manager, and other services.

A typical initialization routine looks like Listing 4.1.

Listing 4.1 An example of initializing the Mac OS Toolbox

(*
 Initialize the Toolbox before calling any
 other Mac OS routines.
*)

MaxApplZone;
MoreMasters;
InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(NIL);
FlushEvents(everyEvent, 0);
InitCursor;

For more information on Toolbox initialization, refer to Inside Mac-
intosh: Overview.

Pascal Library Differences
This section describes the differences among the libraries and units
that CodeWarrior Pascal and other Pascals provide for access to the
Mac OS Toolbox.

Most of the topics in these sections cover problems you will encoun-
ter when porting older Pascal source code to use the Universal Pas-
cal Interfaces, the interface files published by Apple and distributed
with CodeWarrior.

The topics in this section are:

¥ About Universal Interfaces
POR–26 Porting Reference

THINK ® Pascal and MPW Pascal Port ing Issues
Pascal Library Differences
¥ Using Interfaces and Units

¥ QuickDraw Global Variables

¥ 68K and PowerPC Numerics

¥ SANE is Obsolete

¥ Procedure Pointers, Callbacks, and UPPs

About Universal Interfaces

CodeWarrior Professional always comes with the latest Universal
Interfaces, the API for the Mac OS. Apple produces and regularly
updates the Universal Interfaces to fix bugs, accommodate new sys-
tem software features, and anticipate future system software fea-
tures.

If you are porting a project that previously ran only on 68K to run
on PowerPC too, the most notable feature of the Universal Interfac-
es is the identical access to both the 68K and PowerPC Mac OS plat-
forms. With the Universal Interfaces, the same source code will give
identical functionality when compiled for either variety of Macin-
tosh computer.

Many of the differences between other Pascal compilers for Mac OS
and CodeWarrior compilers are because of the changes the Univer-
sal Interfaces introduce. These changes are described in the follow-
ing topics.

In Pascal programming for Mac OS, the Universal Interfaces also
called the Universal Pascal Interfaces (UPIs).

Using Interfaces and Units

CodeWarrior Pascal requires the explicit inclusion of a USES state-
ment in every source code file that uses the Universal Interfaces or
your own units. When moving from other Pascal compilers make
sure to include all relevant units.

A USES statement for a typical program might look like this:
USES Types, QuickDraw, Events, Windows,

Dialogs, Fonts, DiskInit, TextEdit,
Porting Reference POR–27

THINK ® Pascal and MPW Pascal Port ing Issues
Pascal Library Differences
Traps, Devices, Memory, SegLoad,
Scrap, ToolUtils, OSUtils, Menus;

One alternative to using this long clause in your source code is to
create a unit that uses all the Universal Interfaces your program re-
quires. Include this unit in the USES clause in each of your projectÕs
source code files. Then turn on the Uses Propagation option in the
Pascal Language settings panel.

Another alternative is to use the precompiled interfaces for 68K and
PowerPC, MacOSIntf_68K and MacOSIntf_PPC . Type the name
of the appropriate precompiled interface in the PreÞx File field of
the Pascal Language settings panel.

NOTE: The OSIntf and ToolIntf units, which were available
in MPW Pascal, are not available with the Universal Interfaces.

For more information on Universal Interfaces, see ÒAbout Universal
InterfacesÓ on page 27.

QuickDraw Global Variables

The Universal Interfaces require you to access the QuickDraw glo-
bal variables through a global record variable called qd . Any refer-
ences made to the Quickdraw globals must use the qd record.

For example, the statement

InitGraf(@thePort);

becomes

InitGraf(@qd.thePort);

The QuickDraw global data that must be accessed with the qd qual-
ifier are: randSeed , screenBits , arrow, dkGray , ltGray ,
gray , black , white , thePort .

For more information on Universal Interfaces, see ÒAbout Universal
InterfacesÓ on page 27.
POR–28 Porting Reference

THINK ® Pascal and MPW Pascal Port ing Issues
Pascal Library Differences
SANE is Obsolete

Consider SANE (Standard Apple Numerics Environment) obsolete
when writing or updating software to be used on PowerPC-based
Macintosh computers and on 68K-based Macintosh applications
running under CFM 68K. SANE is the numerics environment Apple
developed for ÒclassicÓ 68K Macintosh computers.

SANE.p (for Pascal) is no longer part of the Universal Interfaces. In-
stead, use the routines provided by fp.p.

See also Ò68K and PowerPC NumericsÓ on page 29.

68K and PowerPC Numerics

For more information on porting 68K floating point operations and
data types to PowerPC, refer to Inside Macintosh: PowerPC Numerics.
Appendix A of this manual describes the differences between SANE
and PowerPC numerics and offers tips on porting mathematical op-
erations to PowerPC.

extended Data Type

The extended data type is not supported in PowerPC. Instead, use
double_t , which is defined for both 68K and PowerPC. Refer to
Appendix A of Inside Macintosh: PowerPC Numerics for more infor-
mation.

For more information on Universal Interfaces, see ÒAbout Universal
InterfacesÓ on page 27.

For information on SANE, see ÒSANE is ObsoleteÓ on page 29.

Procedure Pointers, Callbacks, and UPPs

While ordinary procedure pointers work well when used only with
68K code, Universal Procedure Pointers (UPPs) are required when
developing code for both 68K and PowerPC.

Specifically, UPPs allow the Mixed Mode Manager to handle 68K
routine calls to PowerPC routines and PowerPC routine calls to 68K
Porting Reference POR–29

THINK ® Pascal and MPW Pascal Port ing Issues
Pascal Library Differences
routines. UPPs are versatile, allowing you to combine PowerPC and
68K object code in the same program without dealing with mode
switches, parameter order on the stack, and other low-level issues.
On the downside, converting source code to the PowerPC means ex-
plicitly creating a UPP every time you need to provide a callback
routine to a Mac OS routine or any other piece of software that may
either be in 68K or PowerPC object code.

Ways to create a new UPP are:

¥ call the NewRoutineDescriptor routine (in Mixed-
Mode.p) with the appropriate parameters

¥ use one of the Universal InterfacesÕ predeclared routines to
create a specific type of UPP.

To destroy a UPP:

¥ call the DisposeRoutineDescriptor routine (in Mixed-
Mode.p)

For example, to create a new ResErrUPP in Pascal that you can
pass to the Resource Manager you would call:

FUNCTION NewResErrProc(
userRoutine: ResErrProcPtr): ResErrUPP;

passing the name of your procedure as the single parameter. Ne-
wResErrProc and other UPP-creating routines are implemented as
glue code that is linked to your program automatically.

The Universal Interfaces provide routines to directly call universal
procedure pointers. These routines are the interface to the Mixed
Mode Manager.

A typical calling function might look like this:

PROCEDURE CallResErrProc(thErr: OSErr;
userRoutine: ResErrUPP);

When you are done with this UPP, dispose of it by calling
POR–30 Porting Reference

THINK ® Pascal and MPW Pascal Port ing Issues
Pascal Library Differences
DisposeRoutineDescriptor(userRoutine);

These calls are only needed for writing a callback to a Mac OS rou-
tine that exists in a different architecture (PowerPC calling 68K or
68K calling PowerPC).

Note that these calling functions are only needed when you write
code that expects a callback parameter from an outside source. Gen-
erally this is only required if your program allows loadable sub-
modules or patches traps that expect callback functions. Thus you
would only have to use the CallResErrProc procedure if you in-
stall a patch to the Resource Manager that needs to use the ResEr-
ror callback routine.

For more information on Universal Interfaces, see ÒAbout Universal
InterfacesÓ on page 27.
Porting Reference POR–31

THINK ® Pascal and MPW Pascal Port ing Issues
Pascal Library Differences
POR–32 Porting Reference

Index
Symbols
#include 15
_alloca 22
_chdrive 22
_chgsign 23
_clear87 22
_control87 23
_copysign 23
_emit 21
_finite 23
_fpclass 23
fpieee 23
_fpreset 23
_fullpath 22
_gcvt 22
_getdcwd 22
_getdiskfree 22
_getdrive 22
_getdrives 22
_heapmin 22
_hypot 23
_isnan 23
_itoa 22
_itow 22
_makepath 22
_nextafter 23
_scalb 23
_searchenv 22
_splitpath 22
_status87 23
_strdate 22
_strdup 22
_stricmp 22
_strlwr 22
_strnicmp 22
_strrev 22
_strupr 22
_ultoa 22
_wcsdup 22
_wcsicmp 22
_wcslwr 22
_wcsnicmp 22
_wcsnset 22

_wcsrev 22
_wcsset 22
_wcsupr 22
_wstrrev 22
_wtoi 22

Numerics
2000 6
68K 25

size of int 13

A
ALIGN 21
Annotated C++ Reference Manual 10
ANSI 10, 13
ANSI Strict option, C/C++ Language panel 18
ARM. See Annotated C++ Reference Manual.
arrow 28
assembly 21

B
Bessel functions 23
black 28

C
C

documentation 7
See also C++.
See also Metrowerks Standard Library.

C Compilers Reference 7, 10
C++

ANSI 10
ARM 10
CodeWarrior 10
documentation 7
ISO 10
See also Embedded C++.
See also Metrowerks Standard Library.
See also Objective C.

C/C++ Language panel 18, 19
callback routines 29
ccommand 15
CFront 10
Porting Reference POR–33

Index
CodeWarrior
contents 5
package 5

CodeWarrior IDE User Guide 7
command line 15
comparisons, floating point numbers 20
compliance with year 2000 6
console I/O 14
copysign 23

D
DB 21
directive

#include 15
DisposeRoutineDescriptor 30
dkGray 28
double_t 29
DW21
dynamic_cast 19

E
Embedded C++

documentation 7
See also C++.

EMIT 21
EVEN directive 21
exception

Invalid Operation 20
exception handling 19
extended 29
extras.c 22

F
fenv.h 23
files

including 15
Float Invalid Op option, x86 Exceptions panel 20
floating point comparisons 20
fnctl.h 12
fp.p 29
fpclassify 23
FPU

exceptions 20

functions to access 22

G
gray 28

H
HANDLE19
hexadecimal numbers 22
HWND19
hypot 23

I
I/O 14
IDE

documentation 7
IDE. See Integrated Development Environment.
IEEE standards 20
#include 15
inline assembler 21
input 14
input/output 14

redirection 15
Inside Macintosh

Overview 26
PowerPC Numerics 29

int 12
Invalid Operation FPU exception 20
isfinite 23
isnan 23
ISO 10

L
labels, assembly 21
LENGTH21
Lippman, Stanley B. 10
long 12
ltGray 28

M
Mac OS

command line 15
documentation 8
file redirection 15
POR–34 Porting Reference

Index
Menu Manager 26
Mixed Mode Manager 29, 30
porting issues 14
QuickDraw 26, 28
Resource Manager 30
Toolbox 25
Universal Interfaces 27
Window Manager 26

Macintosh 25
MacOSIntf_68K 28
MacOSIntf_PPC 28
MASM 21
Menu Manager 26
Metrowerks Standard Library

description 9
documentation 7

Microsoft Visual Studio 17
Mixed Mode Manager 29, 30
MixedMode.p 30
Motorola 680x0. See 68K
MPW Pascal 25
MSL C Reference 7, 15
MSL C++

variations 13
MSL C++ Reference 7
MSL. See Metrowerks Standard Library
MSL. See Metrowerks Standard Library.

N
NaN 20
NewRoutineDescriptor 30
nextafter 23

O
Object Pascal

documentation 8
Objective C

documentation 7
Objective C++

See also C++.
OOP. See C++ and Object Pascal.
OSIntf 28
output 14

P
Pascal

documentation 8
MPW 25
runtime library 8
See also Object Pascal.
THINK 25

Pascal Compilers Reference 8
Pascal Language panel 28
Pascal Language Reference 8
Pascal Library Reference 8
pointer types 19
POSIX 12
PowerPC

accessing Mac OS 27
Macintosh 25
numerics 29
procedure pointers 29
See also 68K.

precompiled interfaces 28
Prefix File option, Pascal Language panel 28
procedure pointers 29
ProcPtr 29

Q
qd 28
Quick Start 5
QuickDraw 26, 28
QuickStart 5

R
randSeed 28
redirection, file 15
Relaxed Pointer Type Rules option, C/C++ Lan-

guage panel 19
Release Notes folder 5
Resource Manager 30
RTTI. See Runtime Type Information
Runtime Type Information 19

S
SANE 29
SANE.p 29
Porting Reference POR–35

Index
scalb 23
screenBits 28
SHORT21
68K 25
SIZE keyword 21
size_t 13
sizeof() 12
Standard Apple Numerics Environment 29
stat.h 12
stddef.h 13
stdio.h 13
Stroustrup, Bjarne 10
Symantec THINK Pascal 25

T
Targeting Mac OS 8, 14
Targeting manuals, description 8
text I/O 14
thePort 28
THINK Pascal 25
Toolbox 25, 26
ToolIntf 28
TYPE 21
type-checking 19
typeof() 19

U
unistd.h 12
Universal Interfaces 27
Universal Pascal Interfaces 27
Universal Procedure Pointer 29
UNIX 12
unix.h 12
UPI 27
UPP 29
Uses Propagation option, Pascal Language

panel 28
utime.h 12
utsname.h 12

V
Visual Studio 17

W
white 28
Window Manager 26

X
x86 Exceptions panel 20

Y
Year 2000 6
POR–36 Porting Reference

CodeWarrior

Porting Reference

Credits

writing lead: Marc Paquette

other writers: Carl B. Constantine, Gavriel State, L.
Frank Turovich

engineering: the entire Metrowerks R&D staff

frontline warriors: Steve Chernicoff, Ben Combee, Joe
Hayden, Rick Grehan, Steve Jovanovic,
Jun-Kiat Lam, Ron Liechty, John
Roseborough, Lucien Stavenhagen, Jim
Trudeau, L. Frank Turovich, and
CodeWarrior users everywhere

Guide to CodeWarrior Documentation
CodeWarrior documentation is modular, like the underlying tools. There are manuals
for the core tools, languages, libraries, and targets. The exact documentation provided
with any CodeWarrior product is tailored to the tools included with the product. Your
product will not have every manual listed here. However, you will probably have addi-
tional manuals (not listed here) for utilities or other software specific to your product.

Core Documentation

IDE User Guide How to use the CodeWarrior IDE

Debugger User Guide How to use the CodeWarrior debugger

CodeWarrior Core Tutorials Step-by-step introduction to IDE components

Language/Compiler Documentation

C Compilers Reference Information on the C/C++ front-end compiler

Pascal Compilers Reference Information on the Pascal front-end compiler

Error Reference Comprehensive list of compiler/linker error messages, with many fixes

Pascal Language Reference The Metrowerks implementation of ANS Pascal

Assembler Guide Stand-alone assembler syntax

Command-Line Tools Reference Command-line options for Mac OS and Be compilers

Plugin API Manual The CodeWarrior plugin compiler/linker API

Library Documentation

MSL C Reference Function reference for the Metrowerks ANSI standard C library

MSL C++ Reference Function reference for the Metrowerks ANSI standard C++ library

Pascal Library Reference Function reference for the Metrowerks ANS Pascal library

MFC Reference Reference for the Microsoft Foundation Classes for Win32

Win32 SDK Reference Microsoft’s Reference for the Win32 API

The PowerPlant Book Introductory guide to the Metrowerks application framework for Mac OS

PowerPlant Advanced Topics Advanced topics in PowerPlant programming for Mac OS

Targeting Manuals

Targeting BeOS How to use CodeWarrior to program for BeOS

Targeting Java VM How to use CodeWarrior to program for the Java Virtual Machine

Targeting Mac OS How to use CodeWarrior to program for Mac OS

Targeting MIPS How to use CodeWarrior to program for MIPS embedded processors

Targeting NEC V810/830 How to use CodeWarrior to program for NEC V810/830 processors

Targeting Net Yaroze How to use CodeWarrior to program for Net Yaroze game console

Targeting Nucleus How to use CodeWarrior to program for the Nucleus RTOS

Targeting OS-9 How to use CodeWarrior to program for the OS-9 RTOS

Targeting Palm OS How to use CodeWarrior to program for PalmPilot

Targeting PlayStation OS How to use CodeWarrior to program for the PlayStation game console

Targeting PowerPC Embedded Systems How to use CodeWarrior to program for PPC embedded processors

Targeting VxWorks How to use CodeWarrior to program for the VxWorks RTOS

Targeting Win32 How to use CodeWarrior to program for Windows

	Welcome
	Read the Release Notes
	CodeWarrior Year 2000 Compliance
	What is New in This Release
	What is in This Guide
	Where to Go From Here

	Common Porting Issues
	C and C++ Issues
	About Metrowerks Standard Libraries
	ARM and Other C++ Implementations
	CFront and Metrowerks C++
	UNIX and POSIX Libraries
	The sizeof() operator and int

	Mac OS Issues
	Where to Find More Information About Mac OS
	Console I/O for Mac OS
	Command-Line Arguments for Mac OS
	File Redirection for Mac OS
	Including Files In C/C++ on Mac OS

	Microsoft® Visual Studio® Porting Issues
	C/C++ Compiler Differences
	Conforming to the ANSI/ISO C and C++ Standards
	Relaxed Pointer Type Rules
	RTTI
	Exception Handling
	Name Mangling
	IEEE Floating Point Standards
	Inline Assembler

	C/C++ Library Differences

	THINK® Pascal and MPW Pascal Porting Issues
	Pascal Compiler Differences
	Mac OS Toolbox Initialization

	Pascal Library Differences
	About Universal Interfaces
	Using Interfaces and Units
	QuickDraw Global Variables
	SANE is Obsolete
	68K and PowerPC Numerics
	Procedure Pointers, Callbacks, and UPPs

	Index

